(x^2)+(x^2)=4

Simple and best practice solution for (x^2)+(x^2)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)+(x^2)=4 equation:



(x^2)+(x^2)=4
We move all terms to the left:
(x^2)+(x^2)-(4)=0
We add all the numbers together, and all the variables
2x^2-4=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $

See similar equations:

| 5(3x+7)+(25x-15)=180 | | 1=0.4x-0.7x-23 | | 3y-5=7-5y | | 15=14-2x | | 14x-7=10x-4 | | (2^x)+(2^x)=4 | | 3.8(y-6)+4.6=-22 | | 2/3(3x-9)=2 | | -5(x-2)=-x-4x+10 | | Y=(2x-3)(4x+5) | | 17n-7n-9n=13 | | (20/2p-1)=4 | | 5y-4(9-3y)=-2 | | 11n+4n+2n-13n=20 | | (6b+20)+(3b+25)=180 | | 20/2p-1=4 | | 11n+4n+2n−13n=20 | | 174=141+2x+2x+21 | | 8(x+6)+9=8x+2 | | 12x-7x-4x-x+x=16 | | -6+3k=7 | | 3(x-6)/14-2(1-x)/7=-x-7/2-3x-2/7+25/14 | | x+2+2x+3+3=4x | | 4x-14=8x-47-3x+14 | | (n-5/8)+(n+4/9)=19/36 | | 3i(2-4i)=0 | | 2j-2j+6j=18 | | 0,5x=8 | | 14=11+(w/8)*6 | | n+4=32-8 | | 12x+4=-2+4x+70 | | x/3=14/5 |

Equations solver categories